16,725 research outputs found

    High efficiency dark-to-bright exciton conversion in carbon nanotubes

    Full text link
    We report that dark excitons can have a large contribution to the emission intensity in carbon nanotubes due to an efficient exciton conversion from a dark state to a bright state. Time-resolved photoluminescence measurements are used to investigate decay dynamics and diffusion properties of excitons, and we obtain intrinsic lifetimes and diffusion lengths of bright excitons as well as diffusion coefficients for both bright and dark excitons. We find that the dark-to-bright transition rates can be considerably high, and that more than half of the dark excitons can be transformed into the bright excitons. The state transition rates have a large chirality dependence with a family pattern, and the conversion efficiency is found to be significantly enhanced by adsorbed air molecules on the surface of the nanotubes. Our findings show the nontrivial significance of the dark excitons on the emission kinetics in low dimensional materials, and demonstrate the potential for engineering the dark-to-bright conversion process by using surface interactions.Comment: 7 pages, 4 figure

    Single carbon nanotubes as ultrasmall all-optical memories

    Full text link
    Performance improvements are expected from integration of photonic devices into information processing systems, and in particular, all-optical memories provide a key functionality. Scaling down the size of memory elements is desirable for high-density integration, and the use of nanomaterials would allow for devices that are significantly smaller than the operation wavelengths. Here we report on all-optical memory based on individual carbon nanotubes, where adsorbed molecules give rise to optical bistability. By exciting at the high-energy tail of the excitonic absorption resonance, nanotubes can be switched between the desorbed state and the adsorbed state. We demonstrate reversible and reproducible operation of the nanotube optical memory, and determine the rewriting speed by measuring the molecular adsorption and desorption times. Our results underscore the impact of molecular-scale effects on optical properties of nanomaterials, offering new design strategies for photonic devices that are a few orders of magnitude smaller than the optical diffraction limit.Comment: 8 pages, 6 figure

    Two-Nucleon Bound States in Quenched Lattice QCD

    Full text link
    We address the issue of bound state in the two-nucleon system in lattice QCD. Our study is made in the quenched approximation at the lattice spacing of a = 0.128 fm with a heavy quark mass corresponding to m_pi = 0.8 GeV. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state and the free two-nucleon state by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads us to the conclusion that the measured ground states for not only spin triplet but also singlet channels are bounded. Furthermore the existence of the bound state is confirmed by investigating the properties of the energy for the first excited state obtained by 2x2 diagonalization method. The scattering lengths for both channels are evaluated by applying the finite volume formula derived by Luscher to the energy of the first excited states.Comment: 34 pages, 28 figure

    Stark effect of excitons in individual air-suspended carbon nanotubes

    Get PDF
    We investigate electric-field induced redshifts of photoluminescence from individual single-walled carbon nanotubes. The shifts scale quadratically with field, while measurements with different excitation powers and energies show that effects from heating and relaxation pathways are small. We attribute the shifts to the Stark effect, and characterize nanotubes with different chiralities. By taking into account exciton binding energies for air-suspended tubes, we find that theoretical predictions are in quantitative agreement.Comment: 4 pages, 3 figure

    Incentives vs. Control: An Analysis of U.S. Dual-Class Companies

    Get PDF
    Dual-class common stock allows for the separation of voting rights and cash flow rights across the different classes of equity. We construct a large sample of dual-class firms in the United States and analyze the relationships of insider's cash flow rights and voting rights with firm value, performance, and investment behavior. We find that relationship of firm value to cash flow rights is positive and concave and the relationship to voting rights is negative and convex. Identical quadratic relationships are found for the respective ownership variables with sales growth, capital expenditures, and the combination of R&D and advertising. Our evidence is consistent with an entrenchment effect of voting control that leads managers to underinvest and an incentive effect of cash flow ownership that induces managers to pursue more aggressive strategies.

    On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations Associated with Nonlinear Boundary Conditions

    Get PDF
    In this article, we study the large time behavior of solutions of first-order Hamilton-Jacobi Equations, set in a bounded domain with nonlinear Neumann boundary conditions, including the case of dynamical boundary conditions. We establish general convergence results for viscosity solutions of these Cauchy-Neumann problems by using two fairly different methods : the first one relies only on partial differential equations methods, which provides results even when the Hamiltonians are not convex, and the second one is an optimal control/dynamical system approach, named the "weak KAM approach" which requires the convexity of Hamiltonians and gives formulas for asymptotic solutions based on Aubry-Mather sets
    corecore